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Abstract

In this report, we study the problem of disseminating a fresh news content, whose topic is yet unknown,

to all interested users. The goal is to learn the real topic of a news content from the users’ feedback,

while spamming a minimum number of uninterested numbers. This problem can be formulated as an online

stochastic optimization problem. One of the simplest and most popular stochastic optimization methods is

Stochastic Gradient Descent (SGD). In this report We establish a suitably defined regret measure of news

dissemination event, and analyze performance under several stochastic learning algorithms including SGD,

Averaged-SGD(ASGD). The result shows O�ºT � upper bound on training regret, and O�log�T �� upper

bound on expected regret. We also use the training regret to bound of spamming loss caused by spamming

event.

1 Introduction

It is a huge challenge to provide personalized, better-targeted information to users. When a online news

company saw a piece of news, it needs to decide which users are most interested in it in order to improve

information delivery efficiency . The way a user access news online can be generally categorized into pull

mode, when users actively access news, or a push mode, when the news is proactively recommended to users

by news company. Push systems has been drawing great attention from online social network companies

because of its potential profitability. Differ from pull systems, push systems operate on fresh news, i.e.

contents that are not fully characterized yet.

In a push system, an efficient way to characterize a piece of news is analyzing users’ feedback to it: a

news’s category is likely to be similar to the preference of users who like the news. To be more specific, we

assume known preference of all users, and each user will give positive or negative feedback to a news he saw,

based on the news’ feature and his preference. Given a set of users’ preference together with their feedback,

we can characterize the news based on certain estimation method such as maximum likelihood estimation.

During the process of exposing the news to users, some users may not be interested in the news, whom

we call ”spamming users”, which may potentially cause benefit loss of the news delivery company. To stress

this problem, one should improve his understanding of the news while receiving users’ feedback. In another

word, we disseminate the news to a sequence of users based on updating estimation of the news, and in

return update estimation of the news accordingly. Intuitively if we can estimate the news with high accuracy

in each step, the number of exposed spamming users can be reduced.

The estimation problem described above can be formulated as an online learning problem. [1] studies

this problem of single-topic setting, where news is modeled as a τ -d index vector θ�, which means one element

of θ� is 1 and the others are 0, denoting the one topic out of τ topics that this news is related to. Each user

is also represented by a τ -d vector x, showing the user’s interest in each topic. [1] studies the case that each

news contains exactly one topic, and provide a so called Greedy-Bayes algorithm to extract the topic while
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reducing the number of exposed spamming users. [1] provides a O�τ log�T �� upper bound of spamming

regret. While this algorithm works very well to single topic case, it cannot be extended to multiple topic

case, because it always emphasizes on the most significant topic and neglect others.

In this report, we will focus on the setting of multi-topic news, where news θ� is modeled as a τ -

dimensional real vector, denoting how relevant this news is to each of the τ topics. Note that this vector is

unknown at first due to properties of news push system. Other settings are the same as single-topic model.

A user’s feedback to a news depends on the similarity between his interest x and the news’ topic vector θ�.

Based on this, we can learn the news vector by online stochastic learning methods, given a set of users and

their feedback. Specifically, We use Stochastic Gradient Descent method and its variants with log likelihood

as the loss function to update the estimation.

During the learning process, training loss occurs at each step, and they sum up to training regret. We will

further study the performance of stochastic learning algorithms with respect to training regret. [3, 4, 5, 7]

provide various bound on the training regret of online learning algorithms, based on necessary properties

of the loss function. We thus prove certain properties of log likelihood function and provide bounds of the

learning performance based on the result in [3, 4, 5, 7]. We further define a spamming regret similar to

training regret and show it can be bounded by O�ºT �, or O�log�T �� in expectation, by making use training

regret.

2 Online Stochastic Optimization Algorithms

2.1 Problem Description

Our aim is to disseminate a piece of fresh news to a set of interested users, while causing minimum

spamming event. In another word, we want to learn the properties of a news while minimizing training

regret. Given a news, we can define a τ -dimensional vector, called topic vector, to represent how relevant

the news is to each topic. Similarly, we can also define a τ -dimensional vector for each user to represent his

interest to each topic, and we call it interest vector. To be more specific, let F b Rτ be a Hilbert space.

Given a news, let θ� > F denote the topic vector for it, which is unknown at first due to the property of

news push system. We try to approximate the topic vector with an estimation θ > F . Given a user, let x > F

denote his interest vector. We further assume F is bounded and closed, F � �f > Rτ SYfY B H� for some

H A 0. And the users are uniformly distributed in F

From now on, we name a news by its topic vector θ� and name a user by his interest vector x. Given

a news θ� and a user x, we define their similarity η by their dot product, η�θ�, x� � xT θ�. When a user x

is exposed to θ�, he will return a feedback y > �0,1� depends on similarity η, where y � 1 means positive

feedback and 0 means negative. Specifically, y is modeled as a Bernoulli distribution, with parameter

P �y � 1� � h�η� � h�xT θ��, where h�η� � 1

1�e�xT θ
is logistic regression function which maps real numbers to

the range �0,1�. Intuitively if the similarity η between a user and a news is very high, then h�η� � 1, i.e. the

user is likely to like the news; otherwise if it is a negative number with high absolute value, then h�η� � 0,

i.e. the user is likely to dislike the news.

With a user x and his feedback y, we can define log likelihood function to measure a news estimation

θ by LLF �θ, �x, y�� � ylog�h�θ, x�� � �1 � y�log�1 � h�θ, x��, i.e. when the user likes the news, the function

means how likely the user will give positive feedback to θ; when the user dislike like the news, the function

means how likely the user will return negative feedback to θ. In general, it measures how likely the estimation

is the real news vector. In expectation, the real news vector θ� should maximize the likelihood function.

Given a piece of fresh news with unknow θ�, the news dissemination process is to continuously do the

following: expose the news to a user, get the feedback, update the estimation and then expose to the next

user. At the beginning of news dissemination, our initial estimation of θ� based on our prior knowledge is

θ1. At a disseminate step t, we update our estimation θt based on the feedback of the user. After update,

we choose the next user that is most likely to return positive feedback. As the user x that is exactly the
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same with θt is not always available, we ended up select a user that is nearest to θt. Formally, we choose a

user uniformly from a ball centered at θt, with a small diameter ε.

We are solving the news dissemination process by online stochastic algorithms, where we need to mini-

mize a loss function based on our observation and current estimation at each step. We define loss function as

negative log likelihood function L�θ, �x, y�� � �Likelihood�θ, �x, y�� � �ylog�h�θ, x����1�y�log�1�h�θ, x��,
i.e. by minimizing the loss function, we are maximizing the likelihood that the estimation is real. We can

calculate the gradient of L�θ, �x, y�� at θ, we represent it as g�θ, �x, y�� � ©L�θ, �x, y��. At step t, we observe

the user xt’s feedback yt, and update our estimation of a news from θt to θt�1. For example, SGD update

schema is: θt�1 � θt � αtg�θt, �xt, yy��. With the definitions above, we define training loss at step T as

JT ��θT �� � PTt�1L�θt, �xt, yy��, and we can define regret as RT � JT �θt� �minθ̂>FJT ��θ̂��.
Our true purpose is to measure how many uninterested users are exposed to the news, and how much

loss it may cause. We define a spamming event such that the probability that a user more likeli to return

negative feedback, i.e. he likes a news with probability less than 1/2. Based on this definition, we define

spamming loss as Ls�theta�, x� � max�0,1 � 2 � P �y � 1��. We can then define the total spamming loss at

step T as K��θt�� � PTt�1Ls�θt, xt�.
The result in this report is to prove upper bound for regret and total spamming loss, and prove almost

sure convergence of the distance between estimation and real value.

3 Properties of Loss Function

In the previous session we have defined log likelihood function for a user-feedback pair x, y and an

estimation of the news θ, and loss function as negative log likelihood function.

LLF �θ, �x, y�� � ylog�h�θ, x�� � �1 � y�log�1 � h�θ, x�� (1)

L�θ, �x, y�� � �LLF �θ, �x, y�� � �ylog�h�θ, x�� � �1 � y�log�1 � h�θ, x�� (2)

In this section we study several properties of the loss function, include convexity, Lipschitz continuous

and smoothness, which will be used by latter sessions to provide performance bound.

3.1 Convexity

Lemma 1. The loss function L�θ, �x, y�� � �ylog�h�θ, x�� � �1 � y�log�1 � h�θ, x�� is a convex function.

Proof.

L�θ, �x, y�� � �y � log�h�θ, x�� � �1 � y�log�1 � h�θ, x��
� y � log�1 � h�θ, x�

h�θ, x� � � log�1 � h�θ, x��
� �y � η � log�1 � eη�
� L�η� (3)

,where η � xT θ.

Note 1�h�θ,x�
h�θ,x� �

e�x
T θ

1�e�x
θ

1

1�e�x
θ

� e�x
T θ

1 � h�θ, x� � e�x
T θ

1�e�xT θ
�

1

exT θ�1
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Let A�η� � log�1 � eη�

dA

dη
�

eη

1 � eη
�

1

1 � e�η
(4)

d2A

dη2
�

e�η

�1 � e�η�2
C 0 (5)

Hence A�η� is a convex function of η, and L�η� � �y � η �A�η� is a convex function of η. L�θ, �x, y�� is then

convex in θ as η is an affine function of θ

Note the loss function is not necessarily strong convex because with x �
Ð�

0 , L�θ, �x, y� is constant to θ.

However later on we will prove strong convexity of expected loss function with respect to assumption to x.

3.2 Lipschitz Continuity

Lemma 2. The loss function L�θ, �x, y�� � �ylog�h�θ, x����1�y�log�1�h�θ, x�� is H-Lipschitz continuous

where H is the maximum length of a vector in F .

Proof. It is easy to see that L�θ, �x, y�� is everywhere differentiable in F . So it is sufficient to prove

Y©θL�θ, �x, y��Y BH.

We can get the derivative from (3) and (4) that

©θL�θ, �x, y�� � dL
dη

� ©η � x � � 1

1 � e�xT θ
� y� (6)

Since y � 0 or 1 and 1

1�e�xT θ
> �0,1�

Y©θL�θ, �x, y��Y B YxY � 1 �H (7)

3.3 Smoothness

Lemma 3. The loss function L�θ, �x, y�� � �ylog�h�θ, x��� �1� y�log�1�h�θ, x�� is H2

4
-smooth where H is

the maximum length of a vector in F .

Proof. We need to prove Y©L�θ, �x, y�� �©L�θ�, �x, y��Y B H2

4
Yθ � θ�Y.

Y©L�θ, �x, y�� �©L�θ�, �x, y��Y
� Yx � 1

1 � e�xT θ
� x �

1

1 � e�xT θ�
Y

B YxY � Y 1

1 � e�xT θ
�

1

1 � e�xT θ�
Y

B YxY �maxθ̂Y©
1

1 � e�xT θ̂
Y � Yθ � θ�Y

B YxY2
�maxθ̂

e�x
T θ̂

�1 � e�xT θ̂�2
� Yθ � θ�Y (8)

e�x
T θ̂

�1�e�xT θ̂�2 �
1

�1�e�xT θ̂��1�exT θ̂� is maximized at xT θ̂ � 0, when e�x
T θ̂

�1�e�xT θ̂�2 � 1~4. Thus we have:
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Y©L�θ, �x, y�� �©L�θ�, �x, y��Y
B YxY2

�
1

4
� Yθ � θ�Y

B
H2

4
Yθ � θ�Y (9)

3.4 Convexity for Expected Log Likelihood Function

We have analyzed properties of negative log likelihood function L�θ, �x, y��. The convexity of L�θ, �x, y��
is somehow week, due to two reasons. First, log logistic regression function A�η� � log�1 � eη� itself is not

strong convex. A�η� is only strong convex in a compact set. Second, even when A�η� is convex, ©η � x

vanishes when YxY � 0. We can solve the first problem because our hypothesis space, F , is bounded. To

address the second reason, we can instead exam E�L�θ, �x, y���. Note that at each step, given θ we are free

to choose the next user x. And we hereby assume x is uniformly distributed in the ball centered at θ, with

radius ε, ε A 0. We are able to select the user because we know θ and all users’ vectors. This mimic the

realistic case that we always want to the user who aligns with θ. However, this user is not always available

given a finite set of users. So we use a uniform distribution to approximate the case that we choose the best

available user. Also note that the expectation is on the randomness of user selection, and user’s feedback,

i.e.

E�L�θ, �x, y��� � Ex�Ey�L�θ, �x, y����
� Ex�Ey��y � xT θ � log�1 � ex

T θ���
� Ex�� 1

1 � e�xT θ�
� xT θ � log�1 � exT θ��

(10)

Lemma 4. The expected loss function E�L�θ, �x, y��� � Ex�Ey��ylog�h�θ, x�� � �1 � y�log�1 � h�θ, x���� is

σ-strongly convex function with respect to θ. σ �
1

1�e�H2 � R εα�0

Γ� τ2 �1���ε2�α2� τ�12 �αº
π�Γ� τ�12 ��ετ

Proof. In section 3.1, we see that d2L
dη2

�
d2A
dη2

�
1

1�e�η
. Since we assume bounded x and θ, η � xT θ B H2. So

d2L
dη2

�
1

1�e�η
C

1

1�e�H2 . Thus L�η� is 1

1�e�H2 -strong convex on η. It follows Ey�L�η�� is 1

1�e�H2 -strong convex

on η. Let σ1 �
1

1�e�H2

Then we have Ey�L�η1�� C Ey�L�η0�� � dEy�L�η0��
dη�0

� �η1 � η0� � σ1

2
Sη1 � η0S. where η0 � x

θ
0, η1 � x

T θ1, we

have

E�L�θ1, �x, y��� � Ex�Ey�L�θ1, �x, y����

C Ex�Ey�L�θ1, �x, y��� � dEy�L�η0��
dη0

� �xT θ1 � xθ0� � σ1

2
SxT θ1 � x

T θ0S�

� Ex�Ey�L�θ1, �x, y��� � �©Ey�L�θ0, �x, y����T �θ1 � θ0� � σ1

2
SxT θ1 � x

T θ0S�

� E�L�θ1, �x, y��� � �©θ0E�L�θ0, �x, y����T �θ1 � θ0� � σ1

2
Ex�SxT θ1 � x

T θ0S�
(11)

To prove the σ-strong convexity of E�L�θ, �x, y���, we need to prove that E�L�θ1, �x, y��� C E�L�θ0, �x, y����
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�©θ0E�L�θ1, �x, y����T �θ1 � θ0�� σ
2
Yθ1 � θ0Y. It is sufficient to prove Ex�SxT θ1 �x

T θ0S� C σ
σ1

Yθ1 � θ0Y. We can

represent x � θ � δ where δ is uniform in the ball with radius ε centered at 0.

Ex�SxT θ1 � x
T θ0S� � Eδ�S�θ � δ�T θ1 � �θ � δ�T θ0S�

� Eδ�SθT �θ1 � θ0� � δT �θ1 � θ0�S�
� S

δ>Unifom�Ball�0,ε��
SθT �θ1 � θ0� � δT �θ1 � θ0�S � p�δ�

� S
ε

α��ε
SθT �θ1 � θ0� � αYθ1 � θ0YS � p�α�

� S
ε

α�0
�SθT �θ1 � θ0� � αYθ1 � θ0YS � SθT �θ1 � θ0� � αYθ1 � θ0YS� � p�α�

C Yθ1 � θ0YS
ε

α�0
α � p�α�

(12)

The transforming from δ to α is: α � δT �θ0 � θ1�. Given p�δ� � 1
V �Ballτ �ε�� , the volume of a τ -dimensional

ball with radius equal to ε, since this value is the same for all δ project to θ0 �θ1, p�α� � V �Ballτ�1�
º
ε2�α2��

V �Ballτ �ε�� �

Γ� τ2 �1���ε2�α2� τ�12º
π�Γ� τ�12 ��ετ

Let σ2 � R εα�0

Γ� τ2 �1���ε2�α2� τ�12 �αº
π�Γ� τ�12 ��ετ . We have Ex�SxT θ1 � x

T θ0S� C σ2Yθ0 � θ1Y. Thus we have σ�H, ε� �

σ1 � σ2. Note that σ1 is a function of H and σ2 is a function of ε

4 Performance of Online Stochastic Optimization Algorithms

Stochastic gradient descent (SGD) and Averaged stochastic gradient descent (ASGD) are two commonly

used and classic online stochastic optimization algorithms. Roughly speaking, both start with an initial

estimation of optimum, and then update the estimation in a step-by-step manner.In each step, SGD observe

a data, and construct a loss function based on the data and current estimation, and calculate the gradient

descent of the loss function with respect to estimation. It update the estimation by a step size factor times

the gradient descent. ASGD uses the same updating schema as SGD, but it will use a weighted average of

all history estimations to be the final estimation. In ASGD, the training loss is calculated from the weighted

estimation instead of the estimation at the last step. For SGD and ASGD, one may use different step size

strategy for different loss functions. For ASGD, one may further choose different weighting schema to weight

estimations.

Specifically, the SGD and ASGD algorithms for our news dissemination case are as follows

Algorithm 1 Standard SGD

Initialize θ1.
for t � 1,2, ... do

Draw �xt, yt� randomly from Ball�θ, ε�
Update θt as
θt�1 � Π�θt � αt � ©θtL�θt, �xt, yt���

end for
return θT .

Averaged-SGD algorithm outperforms standard SGD algorithm with respect training loss, i.e. L�θT �
is the loss function has certain convex properties. But in general, the performance of training regret of the

two algorithms are in the same order: if the loss function is convex, then the training regret is bounded by

O�ºT �; if the loss function is strongly convex, then the training regret is bounded by O�log�T ��.
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Algorithm 2 Averaged SGD

Initialize θ1.
for t � 1,2, ... do

Draw �xt, yt� randomly from Ball�θ, ε�
Update θt as
θt�1 � Π�θt � αt � ©θtL�θt, �xt, yt���

end for
return 1

γT PTt��1�γ�T�1 θt.

Specifically, in the case of SGD and convex loss function, [5] shows RT B H2
º
T , [7] shows RT B

2H2
º

2T and [4] shows RT B 4H2
º

2T ; if further the loss function is σ-strongly convex, [7] shows RT B

1�log�T �
σ

and [2] shows RT B
H2�1�log�T ��

2σ
. In the case for ASGD, [5] shows RT B O�ºT � for convex loss

function and [4] shows RT B
17H2

σ
log�T �

5 Strong Convexity in Expected Regret Proof

When considering the regret at step T , one may use the definition JT ��θT �� � PTt�1L�θt, �xt, yy��, and

we can define regret as RT ��θt�� � JT ��θt�� �minθ̂>FJT ��θ̂��. To prove a bound for RT , one usually need

to assume convexity of loss function L. As we can see above, sometime L only has very weak convexity,

but the expectation loss E�L� has strong convexity. We define expected regret ERT ��θt�� � E�JT ��θt��� �
minθ̂>FE�JT ��θ̂���. This is different from the expectation of regret, which is E�RT ��θt��� � E�JT ��θt��� �
E�minθ̂>FJT ��θ̂���. Given the expectation of regret, we cannot do better than the previous proof. But

when considering the expected regret, we can see later that we can get a tighter bound by discovering the

strong convexity of each step. Actually, the difference between ERt and E�RT � is from the fixed strategy

term. In ERT it is the minimized value of expected loss; while in E�RT �, it is the expected minimized

loss. It is obvious that the expected minimization is less than minimized expected value, this is where the

difference come from. One may wonder why expected is valid: let’s go to our news-user case, we can see

later that the minimizer for the expected loss is θ�, which is the real news. But in the origin definition of

E�minθ̂>FJT ��θ̂���, the minimizer for each random observation is not necessarily θ�.

More specifically: E�JT ��θ̂��� � PTt�1E�L�θ̂, �xt, yt��� � PTt�1Ex�� 1

1�e�xT θ�
� xT θ̂ � log�1 � exT θ̂�� for

each term in the summation, the derivative is � 1

1�e�xT θ̂
�

1

1�e�xT θ�
� � x which is zero at θ̂ � θ� if x ~� 0. So

argminθ̂E�JT ��θ̂��� � θ�. Let’s then consider JT with T � 1 J1��θ̂�� � L�θ̂, �x1, y1�� � �y1 � log�h�θ, x1�� �
�1 � y1�log�1 � h�θ, x1��. When y1 � 1, it is minimized at θ̂ � x1 �

H
Yx1Y , when y1 � 0, it is minimized at

θ̂ � �x1 �
H

Yx1Y .

If we assume that at each step. an oracle gives the gradient of expected loss function, then our regret

bound can be tighter due to strong convexity. This oracle is not available in practice, but we will see this is

not a problem. Here I will go through the convergence proof in [2, 7] to demonstrate this point.

Let θbt�1 � θt �αt©L�θt, �xt, yt��, and θt�1 � Π�θbt�1�. Let θ� be the real value of the news, i.e. the fixed

strategy that minimize E�L�θ, �x, y���.
by contraction property of Π, and H-Lipschitz continuity of L, we have

Yθt�1 � θ
�Y2

B Yθt � θ�Y2
� 2αt � ©θtL�θt, �xt, yt��T �θt � θ�� � α2

tH
2

. or equivalently:

2©θtL�θt, �xt, yt��T �θt � θ�� B
Yθt � θ�Y2

� Yθt�1 � θ
�Y2

αt
� αtH

2

.
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The strong convexity of E�L�θ, �x, y��� implies that

2�E�L�θt�� �E�L�θ���� B Eθt�2©θtExt�L�θt, �xt, yt��Sθt�T �θt � θ�� � σYθt � θ�Y�

B
E�Yθt � θ�Y2� �E�Yθt�1 � θ

�Y2�
αt

� αtH
2
� σE�Yθt � θ�Y� (13)

Note that F is a ball with radius H, thus its diameter is D � 2H. Summing each side of (13) from t � 1

to T yields:

2�E�JT ��θt��� �E�JT �θ���� B � 1

α1
� σ�E�Yθ1 � θ

�Y� � 1

αT
E�YθT�1 � θ

�Y� �
T�1

Q
t�1

� 1

αt�1
�

1

αt
� σ�E�Yθt�1 � θ

�Y� �H2
T

Q
t�1

αt

B D2� 1

αT
� σT � �H2

T

Q
t�1

αt

� 4H2� 1

αT
� σT � �H2

T

Q
t�1

αt (14)

Let αt �
1
σT

, we have

2�E�JT ��θt��� �E�JT �θ���� B 4H2� 1

αT
� σT � �H2

T

Q
t�1

αt

� H2
T

Q
t�1

αt

B
1 � log�T �

σ
(15)

6 Bound Spamming Regret by Training Regret

In section 2.1, we have define training regret as RT � JT �θt� �minθ̂>FJT ��θ̂��. And also spamming

loss at step T as K��θt�� � PTt�1Ls�θt�. The training loss measures how well our estimator performs on

the sampled data compared to the best fixed strategy. As our sampled data depends on current estimation,

an inaccurate estimation may lead to a user that is unlikely to like the news. So we want to measure at

each step, how likely the user which is equal to our estimation may cause a spamming event. At step t,

our estimation ls θt. If a user x � θt, the Bernoulli feedback parameter p � h�θ�, θt�. We hope to see that

p A 1~2, which means the user will likely to give positive feedback. Thus we use 1~2 as a threshold and define

Ls�θ� �max�0,1 � 2 � h�θ�, θ��.
We will bound Ls�θt� by E�L�θt, �xt, yt�� � L�θ�, �xt, yt��� in order to bound the total spamming loss

K by expected training regret ERt which is in the order of O�log�T ��.
Ls�θ� �max�0,1 � 2 � 1

1�e�θT θ�
�

E�L�θ, �x, y�� �L�θ�, �xt, yt��� � Ex� 1

1�e�xT θ�
xT �θ� � θ� � log� 1�ex

T θ

1�exT θ�
��.

As is shown above, E�L�θ, �x, y��� is convex and is minimized at θ�. Thus E�L�θ, �x, y���L�θ�, �xt, yt��� C
0. Ls is always 0 when θT θ� A 0, thus it is suffice to prove bound for θ such that θT θ� @ 0. Let θ � θÕ � θ�
where θTÕ θ

�
� YθÕYYθ�Y and θT

�
θ� � 0.

Without loss of generality, we can fix the case that Yθ�Y � 1. Thus Ls�θ� � 1 � 2 � 1

1�e
�YθÕY

� Ls�YθÕY�.
dLs�YθÕY�
dYθÕY � �2 � e

�YθÕY

�1�e�YθÕY�2 . SdLs�YθÕY�
dYθÕY S � 2S 1

�1�e�YθÕY��1�eYθÕY� S B
1
2
. Ls�θÕ� is equal to zero if YθÕY � 0, and it is

decreasing with respect to YθÕY with bounded derivative.
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We then exam E�L�θ, �x, y�� � L�θ�, �x, y���. It is know that E�L�θ, �x, y�� � L�θ�, �x, y��� C 0 when

YθÕY � 0. So it is sufficient to prove E�L�θ, �x, y�� � L�θ�, �x, y��� is decreasing on YθÕY with the norm of

derivative lower bounded. Indeed:

©E�L�θ, �x, y�� �L�θ�, �x, y��� � E�©L�θ, �x, y���
� E�©� yxT θ � log�1 � exT θ��
� E�x��y � 1

1 � e�xT θ
��

� Ex�x� 1

1 � e�xT θ
�

1

1 � e�xT θ�
��

� S
δ>Unifom�Ball�0,ε��

�θ � δ�� 1

1 � e��θ�δ�T θ
�

1

1 � e��θ�δ�T θ�
�

(16)

We now exam the gradient along the reverse direction of θ� over θ. Since θT θ� @ 0, it means the gradient

along the direction of θÕ. Let δ � δÕ � δ� where δTÕ δ
�
� YδÕYYδ�Y and δT

�
δ� � 0.

�θ�

Yθ�Y
T

©E�L�θ, �x, y�� �L�θ�, �x, y���

� S
δ>Unifom�Ball�0,ε��

�θ�

Yθ�Y
T

�θÕ � δ�� 1

1 � e��θ�δ�T θ
�

1

1 � e��θ�δ�T θ�
�

� S
δ>Unifom�Ball�0,ε��

�θ�

Yθ�Y
T

�θÕ � δÕ�� 1

1 � e��θÕ�δÕ�T θÕ��θ��δ��T θ�
�

1

1 � e��θÕ�δÕ�T θ�
�

� S
δÕ
S
δ�

�θ�

Yθ�Y
T

�θÕ � δÕ�� 1

1 � e��θÕ�δÕ�T θÕ��θ��δ��T θ�
�

1

1 � e��θÕ�δÕ�T θ�
�

� S
δÕ
S
δ�

�θ�

Yθ�Y
T

�θÕ � δÕ��1

2
� 1

1 � e��θÕ�δÕ�T θÕ��θ��δ��T θ�
�

1

1 � e��θÕ�δÕ�T θÕ��θ���δ��T θ�
� � 1

1 � e��θÕ�δÕ�T θ�
�

� S
δÕ
S
δ�

�θ�

Yθ�Y
T

�θÕ � δÕ��1

4
� 1

1 � e��θÕ�δÕ�T θÕ��θ��δ��T θ�
�

1

1 � e��θÕ�δÕ�T θÕ��θ��δ��T θ�

�
1

1 � e��θÕ�δÕ�T θÕ��θ��δ��T θ�
�

1

1 � e��θÕ�δÕ�T θÕ��θ��δ��T θ�
� � 1

2
� 1

1 � e��θÕ�δÕ�T θ�
�

1

1 � e��θÕ�δÕ�T θ�
���

A S
δÕ
S
δ�

�θ�

Yθ�Y
T

�θÕ � δÕ��1~2 � 1

1 � e��θÕ�δÕ�T θ�
�

� c (17)

Note that we use the fact that 1

1�e
��θÕ�δÕ�

T θÕ��θ��δ��
T θ�

�
1

1�e
��θÕ�δÕ�

T θÕ��θ��δ��
T θ�

�
1

1�e
��θÕ�δÕ�

T θÕ��θ��δ��
T θ�

�
1

1�e
��θÕ�δÕ�

T θÕ��θ��δ��
T θ�

A

2. Let α � e�θ
T
Õ θÕ�θ

T
�
θ� , β � e�δ

T
Õ θÕ , γ � e�δ

T
�
θ� . Then the above can be written as 1

1�αβγ
�

1
1�αβ�1γ�1

�
1

1�αβ�1γ
�

1
1�αβγ�1

. When a @ 1, 1
1�ab

�
1

1�ab�1
A 1, thus 1

1�αβγ
�

1
1�αβ�1γ�1

�
1

1�αβ�1γ
�

1
1�αβγ�1

A 2. We also use the fact

that 1

1�e
��θÕ�δÕ�

T θ�
�

1

1�e
��θÕ�δÕ�

T θ�
@ 2 Based on similar analysis.

Thus we can assume an lower bound c of �θ�

Yθ�Y
T
©E�L�θ, �x, y�� � L�θ�, �x, y��� that only depends on ε

and is larger than 0.

Thus we have E�L�θ, �x, y�� � L�θ�, �x, y��� C 2c � Ls�θ�. Which follows KT ��θt�� � PTt�1Ls�θt� B

1
2c
RT ��θt��
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7 Conclusion

In this project, we studied the news dissemination problem. We used stochastic gradient descent as

learning algorithm and use negative log likelihood function as training loss function. By analyzing properties

of this loss function and surveying works on training regret bound, we proved that the training regret under

such loss function is bounded by O�ºT �, and the expected training regret is bounded by O�log�T ��. By

selecting the nearest user based on estimated news, we can prove that the expected spamming loss is bounded

by the order O�logT �
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